3.563 \(\int \frac{\sqrt{\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=214 \[ \frac{67 A-3 i B}{60 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

[Out]

((1/8 - I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d
*x]]*Sqrt[Tan[c + d*x]])/(a^(5/2)*d) + (A + I*B)/(5*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + (13*A
 + (3*I)*B)/(30*a*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + (67*A - (3*I)*B)/(60*a^2*d*Sqrt[Cot[c +
 d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.747459, antiderivative size = 214, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {4241, 3596, 12, 3544, 205} \[ \frac{67 A-3 i B}{60 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((1/8 - I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d
*x]]*Sqrt[Tan[c + d*x]])/(a^(5/2)*d) + (A + I*B)/(5*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + (13*A
 + (3*I)*B)/(30*a*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + (67*A - (3*I)*B)/(60*a^2*d*Sqrt[Cot[c +
 d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{A+B \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx\\ &=\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{1}{2} a (9 A-i B)-2 a (i A-B) \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2}\\ &=\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{1}{4} a^2 (41 A-9 i B)-\frac{1}{2} a^2 (13 i A-3 B) \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{15 a^4}\\ &=\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{67 A-3 i B}{60 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{15 a^3 (A-i B) \sqrt{a+i a \tan (c+d x)}}{8 \sqrt{\tan (c+d x)}} \, dx}{15 a^6}\\ &=\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{67 A-3 i B}{60 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left ((A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{67 A-3 i B}{60 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}-\frac{\left (i (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{5/2} d}+\frac{A+i B}{5 d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac{13 A+3 i B}{30 a d \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac{67 A-3 i B}{60 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 6.61944, size = 167, normalized size = 0.78 \[ \frac{\cot ^{\frac{3}{2}}(c+d x) \sec ^2(c+d x) \left (\frac{30 (A-i B) e^{3 i (c+d x)} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )}{\sqrt{-1+e^{2 i (c+d x)}}}+2 ((86 A+6 i B) \cos (2 (c+d x))+80 i A \sin (2 (c+d x))+19 A+9 i B)\right )}{120 a^2 d (\cot (c+d x)+i)^2 \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(Cot[c + d*x]^(3/2)*Sec[c + d*x]^2*((30*(A - I*B)*E^((3*I)*(c + d*x))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*
I)*(c + d*x))]])/Sqrt[-1 + E^((2*I)*(c + d*x))] + 2*(19*A + (9*I)*B + (86*A + (6*I)*B)*Cos[2*(c + d*x)] + (80*
I)*A*Sin[2*(c + d*x)])))/(120*a^2*d*(I + Cot[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.636, size = 1078, normalized size = 5. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

(-1/120+1/120*I)/d/a^3*(60*I*B*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)^2*sin(
d*x+c)*2^(1/2)+67*A*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+3*B*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1
/2)-30*I*B*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)*sin(d*x+c)*2^(1/2)+15*A*2^
(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-45*B*2^(1/2)*cos(d*x+c)*arctan(
(1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))+15*B*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x
+c))^(1/2)*2^(1/2))-160*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^3+160*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/
2)*cos(d*x+c)+160*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^3-160*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)
*cos(d*x+c)+67*I*A*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+15*I*A*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(
d*x+c))^(1/2)*2^(1/2))*2^(1/2)-3*I*B*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+60*B*arctan((1/2+1/2*I)*((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)^3*2^(1/2)-172*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)
^2*sin(d*x+c)+12*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^2*sin(d*x+c)-30*B*arctan((1/2+1/2*I)*((cos(d*x
+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)^2*2^(1/2)+60*I*A*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(
1/2)*2^(1/2))*cos(d*x+c)^3*2^(1/2)-172*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^2*sin(d*x+c)-30*I*A*ar
ctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)^2*2^(1/2)-12*I*B*((cos(d*x+c)-1)/sin(d*
x+c))^(1/2)*cos(d*x+c)^2*sin(d*x+c)-45*I*A*2^(1/2)*cos(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(
1/2)*2^(1/2))-15*I*B*2^(1/2)*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))-60*A*arc
tan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+30*A*arctan((1/2+1/
2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*cos(d*x+c)*sin(d*x+c)*2^(1/2))*(cos(d*x+c)/sin(d*x+c))^(1/2)*(
a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(4*I*sin(d*x+c)*cos(d*x+c)^2+4*cos(d*x+c)^3-I*sin(d*x+c)-3*cos(d
*x+c))/((cos(d*x+c)-1)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 2.03007, size = 1358, normalized size = 6.35 \begin{align*} -\frac{{\left (15 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{{\left (2 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A - B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - 15 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (-\frac{{\left (2 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A - B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - \sqrt{2}{\left ({\left (-83 i \, A + 3 \, B\right )} e^{\left (6 i \, d x + 6 i \, c\right )} +{\left (64 i \, A + 6 \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} +{\left (16 i \, A - 6 \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i \, A - 3 \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-6 i \, d x - 6 i \, c\right )}}{120 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/120*(15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log((2*sqrt(1/2)*a^3*d
*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A -
 B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I
*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - 15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(6*I*d*x
+ 6*I*c)*log(-(2*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(2*I*d*x + 2*I*c) - sqrt(2)*((I*A
+ B)*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I
*d*x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - sqrt(2)*((-83*I*A + 3*B)*e^(6*I*d*x + 6
*I*c) + (64*I*A + 6*B)*e^(4*I*d*x + 4*I*c) + (16*I*A - 6*B)*e^(2*I*d*x + 2*I*c) + 3*I*A - 3*B)*sqrt(a/(e^(2*I*
d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-6*I*d*x -
6*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt{\cot \left (d x + c\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(cot(d*x + c))/(I*a*tan(d*x + c) + a)^(5/2), x)